Abstract

A novel energy-saving hybrid cooling system that combines a forced-cooling cycle and a free-cooling cycle was developed to increase the energy efficiency of cooling systems in year-round operation of an internet data center with high heat loads. This system effectively utilizes a dam deep water source to reduce energy consumption in internet data centers. The hybrid cooling system operates in forced-cooling mode when the entering water temperature exceeds the mode change temperature of 9 °C, but switches to free-cooling mode when the ambient temperature falls below the mode change temperature. In this paper, the cooling performance of the hybrid system was assessed under various operating conditions based on entering water temperature fluctuation. Because the cooling effectiveness of this type of system is highly dependent on the outside climate, its usefulness and suitability for different periods and zones must be investigated. The annual energy saving performance of the new system was estimated and compared to a conventional cooling system in terms of the integrated coefficient of performance, based on the hourly weather air temperature and water temperature bin data collected from 16 cities of different climate zones in South Korea. The experimental findings revealed that the novel hybrid internet data center cooling system showed a 67% annual operating performance over a conventional air source internet data center cooling system due to the adoption of a dam deep water source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call