Abstract

ABSTRACTDurability of membrane electrode assembly (MEA) is a serious problem to be overcome in the commercial development of proton exchange membrane fuel cell (PEMFC). The change in volume due to water–ice conversion has an irreversible effect on the MEA, which affects the performance of PEMFC. For investigating the optimal initial water content of MEA that minimizes the impact on PEMFC performance after freeze–thaw (F/T) cycles, this study first measured the high‐frequency resistance to determine the water content of MEA, and then subjected five MEAs with different water contents to 60 F/T cycles at −20°C to 30°C. The fuel cell output performance of five MEAs was found to be inconsistently degraded by polarization curve tests, with the cells of the two MEAs with the lowest and highest water contents exhibiting the worst output performance. Electrochemical impedance spectroscopy curves proved that the difference in resistance change after F/T cycles is one reason why the cell output performance is degraded differently. Finally, the degradation of cell performance was further explained by cyclic voltammetry. These results indicate that MEA has the best output performance for F/T cycles at an initial water content of 3.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.