Abstract

Phase retrieval algorithm is an effective method to reconstruct the surface distortions for reflector antennas. As the traditional Fourier iterative algorithms usually stagnate at local minima, we previously proposed a global phase retrieval algorithm, named CMAES-HIO, based on the hybridization of hybrid-input-output algorithm and covariance matrix adaptation evolution strategy. We address the problem of selection of the Zernike order used in the phase parameterization for CMAES-HIO algorithm in this paper. By introducing a hybrid evaluation parameter, which combines the algorithm accuracy and time consumption, we utilize the Monte-Carlo method to simulate the algorithm performance under different random surface distortions. Simulation results show that for an unknown surface distortion, a Zernike order of 5 or 6 is probably the optimum for the comprehensive algorithm performance with respect to time and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.