Abstract

Tight sandstone gas reservoirs are characterized by deep burial, high pressure, tight matrix, fracture development, and the prevalence of edge and bottom water. Because of the small pore throats, the phenomenon of capillary force is evident. In addition, the low permeability of the reservoir and the difference in fluid properties make the gas reservoir undergo severe water-blocking damage. In this paper, centrifugal and nuclear magnetic resonance methods are used. The relationship between pore throat characteristics, fluid distribution, and gas reservoir water-blocking mechanism is studied and analyzed. The experimental results show that fracture formation increases the porosity of the small pores and expands the pore size distribution. It is conducive to the displacement of the bound water in the small pore space and the reduction in the bound water saturation. When increasing the same displacement pressure, the core porosity increases. More residual water in the tiny pores is converted to moveable water, thereby reducing the capillary resistance. The high-angle penetration fractures and complex seam networks are created by fractures. They connect the pores to form a fracture network structure, which is conducive to the communication of seepage channels. The increase in porosity and the creation of a complex fracture network make the water inrush along the fractures more even in the process of mining. This slows the advance speed of the water invasion front and reduces the damage of water blocking. The results enhance the understanding of the water invasion mechanism of edge and bottom water so as to improve the recovery factors of tight sandstone gas reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.