Abstract

AbstractThe freezing of sulfate saline soil involves the coupling effect of heat and mass transfer and crystallization deformation. The influence of salt content and temperature on the crystallization of ice and salt was analyzed by using a one‐side freezing experiment. Based on the effect of solute and temperature on water activity, a crystallization kinetics model of ice–water phase change in saline soil was established. The application of supersaturation in the crystallization kinetics model of solution–crystal phase change is improved with the Frezchem model. The calculated results are compared with experimental data to validate the effectiveness of the proposed model. the study shows that: (a) crystallization can be well illustrated by the proposed model based on the concepts of the formation factor of ice crystals and solution supersaturation; (b) convection and diffusion are the main means of salt redistribution, which cause the accumulation of salt above the freezing front and the formation of discontinuously distributed–layered salt crystal zones; and (c) the alternate crystallization of ice and salt increases variation i solute concentration and then increases crystallization pressure, which leads to the deformation of salt expansion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.