Abstract

Powder forging combines powder metallurgy and forging technology, thus possess the advantages of both processes that result in both stronger and yet more versatile products with complicated geometry and arbitrary alloy compositions. For complete filling up, predicting the power requirement and final face width is an important feature of the powder forging process. In this paper, a finite element method is used to investigate the forging force, the final face width and the density variation of the spur gear powder forging process. In order to verify the FEM simulation results, the experimental data are compared with the results of the current simulation for the forging force and the final face width of spur gear. The influences of the parameters such as modules, number of teeth, the initial relative density, the ratio of the height to diameter of billet and friction factor on the forging force and the final face width of the billets are also examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call