Abstract

The plastic deformation of TWIP steel is greatly inhibited during the expansion process. The stress-strain curves obtained through expansion experiments and observations of fracture morphology confirmed the low plastic behavior of TWIP steel during expansion deformation. Through an analysis of the mechanical expansion model, it was found that the expansion process has a lower stress coefficient and a faster strain rate than stretching, which inhibits the plasticity of TWIP steel during expansion deformation. Using metallographic microscopy, transmission electron microscopy, and EBSD to observe the twin morphology during expansion deformation and tensile deformation, it was found that expansion deformation has a higher twin density, which is manifested in a denser twin arrangement and a large number of twin deliveries in the microscopic morphology. During the expansion deformation process, dislocation slips are hindered by twins, the free path of the slips is reduced, and dislocations accumulate significantly. The accumulation area is the initial point of crack expansion. The results show that the significant dislocation accumulation caused by the delivery of a large number of twins under expansion deformation is the main reason for the decrease in the plasticity of TWIP steel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.