Abstract

Aiming at the typical characteristics of natural rainfall in alpine areas and the structure of the concentrator surface, based on the design scheme of the trough system test platform, the optical performance and cleaning characteristics of the mirror with rainfall intensity and concentrator tilt angle as variables are studied experimentally. The results show that small-scale rainfall has a critical tilt angle of positive and negative cleaning effect on transverse region1. Lower than this tilt angle causes pollution to the mirror surface. Rainfall above medium intensity has a positive cleaning effect on all mirror regions. The cleaning ability is the highest under the rainfall of 60° tilt angle of 38.9 mm. The bottom-up enhanced cleaning law in the transverse region is more significant under high-intensity rainfall, and the concentrator tilt angle is more sensitive to dust desorption than rainfall intensity. The average relative error and average root mean square error of the predicted reflectivity of the global mirror are 3.82% and 0.061 respectively, and the fitting accuracy is high. It provides theoretical guidance for the application of dust removal schemes and prediction of the optical performance of trough solar system in alpine areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call