Abstract

To acquire a satisfying cutting effect during medium-length hole blasting driving of rock tunnels, an improved wedge cutting blasting method with supplementary blasting of the center holes was proposed. Initially, the cavity forming mechanism of the improved cutting method was analyzed theoretically. The results suggested that cutting hole blasting could realize the ejection of rock within the range from free face to critical cutting depth, and hence reduce the restraining force of the center hole blasting, and the supplementary blasting of the center holes could further accomplish the expulsion of the residuary rock. Subsequently, simulation of the improved cutting method was implemented to exhibit the stress wave evolution and reveal the stress field distribution. The simulation results indicated that cutting hole blasting could cause the preliminary failure of the residuary rock, and center hole blasting could strengthen the stress field intensity in 1.8–2.5 m in order to aggravate the destruction of the residuary rock. Hence, the residuary rock could be broken into small fragments that were easy to expel out. Finally, a field application experiment was conducted in a coal mine rock tunnel. Using the improved wedge cutting method instead of the conventional wedge cutting method, the full-face blasting driving efficiency was obviously enhanced and the overall blasting driving expense was significantly reduced, which forcefully confirmed the engineering usefulness of the improved wedge cutting method in the medium-length hole blasting driving of rock tunnels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call