Abstract
Bridge widening involves phased construction of adjacent structures to maintain uninterrupted traffic flow. This process exposes freshly placed longitudinal joints between staged deck constructions to vehicle-induced vibrations, potentially compromising their mechanical integrity. This study investigates the flexural behavior of ultra-high-performance concrete (UHPC) longitudinal joints under such vibrations through model tests. To simulate actual site conditions, we developed a novel vibration test setup that replicates the dynamic environment experienced by these joints during construction. Micro- and meso-scale tests were conducted to examine the flexural behavior of longitudinal joints following vibration exposure. Results revealed that vibration amplitude significantly influences fiber orientation and flexural strength of ultra-high-performance concrete (UHPC) wet joint specimens. Low-amplitude vibrations (3 Hz at 1 mm and 3 mm) enhanced fiber orientation, increasing flexural strength by 11.5% to 19.8% and ultimate load capacity by 17% compared to non-vibrated specimens. Conversely, high-amplitude vibrations (3 Hz at 5 mm) adversely affected fiber orientation, decreasing flexural strength by 23.9% and ultimate load capacity by 19% relative to non-vibrated specimens.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have