Abstract

Based on the principle of reciprocal symbiosis and co-metabolism of mixed culture microorganisms, a group of high-efficiency maize straw-degrading hydrogen-producing complex bacteria X9 + B2 was developed by a strain matching optimization experiment. Systematic research and optimization experiments were carried out on the mechanism of the main controlling factors affecting the hydrogen production of the complex bacteria. The results showed that the optimum conditions for the acid blasting pre-treatment of maize straw as a substrate were as follows: when the inoculation amount was 6% and the inoculum ratio was 1 : 1, at which point, we needed to simultaneously inoculate, the initial pH was 6, the substrate concentration was 12 g L−1, and the culture time was 40 h. The complex bacteria adopted the variable temperature and speed regulation hydrogen production operational mode; after the initial temperature of 37 °C for 8 hours, the temperature was gradually increased to 40 °C for 3 hours. The initial shaker speed was 90 rpm for 20 hours, and the speed was gradually increased to 130 rpm. The maximum hydrogen production rate obtained by the complex bacteria under these conditions was 12.6 mmol g−1, which was 1.6 times that of the single strain X9 with a maximum hydrogen production rate of 5.7 mmol g−1. Through continuous subculturing and the 10th, 20th, 40th, 60th, 80th, 100th and 120th generation fermentation hydrogen production stability test analysis, no significant difference was observed between generations; the maximum difference was not more than 5%, indicating better functional properties and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.