Abstract
The effects of substrate concentration and temperature on fermentative hydrogen production from Eichhornia crassipes using pig slurry microflora were studied, and the optimal values for maximum biohydrogen production were determined in batch experiments. Hydrogen and methane yield (HY and MY) and production rate (HPR and MPR) were evaluated at various E. crassipes concentrations (10–80 g/L) and incubation temperatures (25, 35, 45, 55, and 65 °C). Hydrogen and methane production were observed during the E. crassipes fermentation without any nutrients addition, and were dependent on E. crassipes concentrations. Maximum HPR (38.2 mmol H 2/L/d) and MPR (29.0 mmol CH 4/L/d) were obtained at E. crassipes concentration of 40 g/L and 80 g/L, respectively. Monod model and modified Andrew model were used to fit the hydrogen production rate data. Modified Andrew model could describe better the effects of substrate concentration on hydrogen production rate (greater R 2 value). Maximum HPR (221.3 mmol H 2/L/d) and MPR (24.4 mmol CH 4/L/d) were obtained at 45 and 55 °C, respectively. These values were ca. 1105 and 18 folds higher than the HPR (0.2 mmol H 2/L/d) and MPR (7.3 mmol CH 4/L/d) at 25 °C, probably due to increased hydrolysis of E. crassipes at higher temperatures. Ratkowsky model could best describe the progress of hydrogen and methane production potential and rate ( R 2 > 0.9). The optimum E. crassipes concentration and incubation temperature were determined as 47.8 g/L and 62.5 °C, respectively for maximum hydrogen and methane production. Biohydrogen and biomethane yields from E. crassipes were 31.3 GJ/ha/y and 853.9 GJ/ha/y, respectively, with a total CO 2 emission reduction from 15.2 to 23.7 tons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.