Abstract

This paper investigates the global chaotic attitude dynamics and control of completely viscous liquid-filled spacecraft with flexible appendage. The focus in this paper is on the way in which the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and then transformed into a form suitable for the application of Melnikov’s method. Melnikov’s integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of the system parameters. This criterion is evaluated for its significance to the design of spacecraft. In addition, the Melnikov criterion is compared with numerical simulations of the system. Numerical solutions to these equations show that the attitude dynamics of liquid-filled flexible spacecraft possesses characteristics common to random, non-periodic solutions and chaos. This paper demonstrated that the desired final polarity control is guaranteed by using a pair of thruster impulses. The control strategy for a reorientation maneuver is designed and the numerical simulation results are presented for both the uncontrolled and controlled spin transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call