Abstract

In this paper, the chaotic dynamics in an attitude transition maneuver of a rigid body with a completely liquid-filled cavity in going from minor axis to major axis spin under the influence of viscous damping and a small flexible appendage constrained to undergo only torsional vibration is investigated. The focus in this paper is on the way in which the dynamics of the liquid and flexible appendage vibration are coupled. The equations of motion are derived and then transformed into a form suitable for the application of Melnikov's method. Melnikov's integral is used to predict the transversal intersections of the stable and unstable manifolds for the perturbed system. An analytical criterion for chaotic motion is derived in terms of the system parameters. This criterion is evaluated for its significance to the design of spacecraft. The dependence of the onset of chaos on quantities such as body shape and magnitude of damping values, fuel fraction and frequency of flexible appendage vibration are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.