Abstract

Aiming to solve the problem of thermal decay of resin-based friction materials at high temperatures, rare-earth-lanthanum-oxide-/cerium-oxide-reinforced resin-based friction plates were prepared using a hot-pressing molding process. The effect of lanthanum/cerium oxide with different contents on the mechanical and tribological properties of the resin-based friction of materials was studied, and its mechanism was explored. The result shows that lanthanum/cerium oxide improves the mechanical and tribological properties of materials so that the coefficient of friction of the specimen is more stable on adding lanthanum/cerium oxide at 5% and 1%. Lanthanum/cerium oxide improves antidegradation properties of resin-based material and reduces the high-temperature wear rate by enhancing the interfacial effect so that the wear form of the specimen changes from predominantly adhesive wear to predominantly abrasive wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call