Abstract

This article presents an extraction and reconstruction method for arbitrary two-dimensional and three-dimensional frequency features in precision machined surfaces. A combination of power spectrum density and continuous wavelet transform is used to analyze the potassium dihydrogen phosphate crystal surface topography. All frequencies involved in sampling area of measuring instrument are distinguished by power spectrum density method. Compared to discrete wavelet transform used to decompose frequency features, continuous wavelet transform method can extract and reconstruct two-dimensional profile and three-dimensional topography of arbitrary frequency features from original precision machined surfaces. Analysis results show that amplitude and distribution of different frequency features in two-dimensional profile or three-dimensional surface topography are fully restored by continuous wavelet transform. The effects of different factors in machining process on precision machined surface topography may be discovered. Furthermore, the extraction and reconstruction method is generally applicable for the analysis of all precision machined surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call