Abstract

The rise in hydrogen fuel cell electric vehicles (FCEVs) is expected to pose a variety of hazards on the road. Vehicles using hydrogen could cause significant damage, owing to hydrogen vapor cloud explosions, jet fires caused by leakage, or hydrogen tank explosions. This risk is expected to further increase in semi-enclosed spaces, such as underground parking lots and road tunnels. Therefore, it is necessary to study the fire safety of hydrogen vehicles in semi-enclosed spaces. In this study, an experiment on hydrogen tank explosion was performed. In addition, the CFD numerical model was verified using the experimental results, and the damaging effect due to pressure propagation during hydrogen tank explosions in underground parking lots and road tunnels was analyzed using numerical analysis. From the experiment results, the hydrogen tank exploded at about 80 Mpa, a maximum incident pressure is generated 267 kPa at a distance of 1.9 m. As a result of numerical analysis based on the experimental results, the limit distance that can cause serious injury due to the explosion of a hydrogen tank in a road tunnel or underground parking lot was analyzed up to about 20 m from the point of explosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.