Abstract

The deployment of hydrogen fuel cell electric vehicles (FCEVs) is critical to achieve zero emissions. A key parameter influencing FCEV performance and durability is hydrogen fuel quality. The real impact of contaminants on FCEV performance is not well understood and requires reliable measurements from real-life events (e.g., hydrogen fuel in poor-performing FCEVs) and controlled studies on the impact of synthetic hydrogen fuel on FCEV performance. This paper presents a novel methodology to flow traceable hydrogen synthetic fuel directly into the FCEV tank. Four different synthetic fuels containing N2 (90–200 µmol/mol), CO (0.14–5 µmol/mol), and H2S (4–11 nmol/mol) were supplied to an FCEV and subsequently sampled and analyzed. The synthetic fuels containing known contaminants powered the FCEV and provided real-life performance testing of the fuel cell system. The results showed, for the first time, that synthetic hydrogen fuel can be used in FCEVs without the requirement of a large infrastructure. In addition, this study carried out a traceable H2 contamination impact study with an FCEV. The impact of CO and H2S at ISO 14687:2019 threshold levels on FCEV performance showed that small exceedances of the threshold levels had a significant impact, even for short exposures. The methodology proposed can be deployed to evaluate the composition of any hydrogen fuel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call