Abstract

In this work, by controlling the positional relationship between the target and the focal point, the surface damage, shock wave phenomenon and propagation mechanism involved in the plasma generation of fused silica by millisecond pulsed laser irradiation at different focal positions were studied. Laser energy is an important experimental variable. The dynamic process of plasma was detected by optical shadow method, and the influence of surface film damage on plasma propagation and the propagation mechanism at different focal positions were discussed. The study found that the plasma induced by the pulsed laser at the focus position within 0–20 μs exploded, the micro-droplets formed around 20 μs. At the same time, a shock wave is formed by the compressed air, the micro-droplets are compressed under the action of the shock wave recoil pressure, and the micro-droplets channel phenomenon is observed in the micro-droplets. The peak velocities of plasma and combustion wave appear earlier in the pre-focus position than in the post-focus position. This research provides a reference for the field of laser processing using fused silica as the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.