Abstract
In the reversed field pinch (RFP), plasmas exhibit various self-organized states. Among these, the three-dimensional (3D) helical state known as the “quasi-single-helical” (QSH) state enhances RFP confinement. However, accurately describing the equilibrium is challenging due to the presence of 3D structures, magnetic islands, and chaotic regions. It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure. To address this issue, we introduce KTX3DFit, a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment (KTX) RFP. KTX3DFit utilizes the stepped-pressure equilibrium code (SPEC) to compute 3D equilibria and uses polarimetric interferometer signals from experiments. KTX3DFit is able to reconstruct equilibria in various states, including axisymmetric, double-axis helical (DAx), and single-helical-axis (SHAx) states. Notably, this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.