Abstract
To improve the thermal and economic performance of liquid cooling plate for lithium battery module in the distributed energy storage systems, on the basis of the traditional serpentine liquid cooling plate, the unidirectional secondary channels and grooves are added, combined to three kinds of serpentine cold plates for the battery module. By contrast, the cold plate with both elliptical groove and secondary channel has the best comprehensive performance. Though the thermal performance is slightly reduced, the consumption of pump power is reduced by 92.6 % and the cooling efficiency coefficient is improved by 12.32 times compared to the original cold plate. The cooling temperature targets of the battery pack are that Tmax less than 40℃ and ΔTavg less than 3 K. In order to achieving the best performance of the cold plate, the influence of the structural parameters and hydrodynamic parameters on the performance index is analyzed, and the sensitivity analysis is carried out which clear the operational mechanism and key design parameters of the cold plate. The results show that different design parameters would generate the change of eddy current which is influential to the cooling performance. Besides, v and D have a significant effect on the performance of the cold plate, followed by d and n, and a has almost no effect on the cooling performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have