Abstract

The high-elastic Cu-20.0Ni-5.0Sn-0.25Zn-0.22Mn alloy was designed and prepared using a 830°C/2h+850°C/2h dual-stage homogenization annealing process. The true stress-strain curves of well annealed Cu-20.0Ni-5.0Sn-0.25Zn-0.22Mn alloy were plotted as a function of compressive temperature and strain rate. The results showed that the stage division of thermal compression deformation is temperature dependent, which involves work hardening, dynamic recovery and recrystallization stages. The maximum value of the true stress increases as the strain rate gets larger, but decreases as the deformation temperature rises. The high temperature compression deformation process of the alloy is a thermal activated process, and the corresponding constitutive equation of the true stress-strain is established.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call