Abstract

Based on the mechanism of charge collection, drift and diffusion, the influence of incident position, drain bias and incident particle LET (Linear Energy Transfer) value on the charge collection of NMOS devices is analyzed. It is found that the strongest electric field in drain depletion region is at 70 nm, and the maximum transient current is 3.43 mA. Drain bias affects the electric field in drain region. The higher drain bias is, the greater the electric field is, and the transient current is the larger of the peak value is, and the change of drain bias does not affect the diffusion current part; the larger the LET is, the larger the set current is, and the transient current peak value and collection charge increase linearly with the increase of LET. In addition, for a single transistor, the influence of the reduction of gate length on the bipolar amplification is analyzed, which is discovered that the reduction of gate length results in the aggravation of the single event effect. Therefore, the simulation results provide valuable reference for research on irradiation reliability and application of strained integrated circuit of Si Nano-scale NMOSFET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.