Abstract

This study investigates the complex properties of a novel biocomposite by a conventional process, which is composed of poly (lactic acid) (PLA) as the matrix, porcelain particles as fillers, and Napier grass fibre as reinforcement. The primary objective was to evaluate the mechanical, crystalline, water absorption, morphological, and antibacterial properties of the biocomposites in relation to the individual components and their synergistic impacts. When 25 g porcelain particles were added to PLA with Napier grass fibre, mechanical tests demonstrated a 25% increase in tensile strength (maximum tensile strength of 39.76 MPa) and a 30% increase in flexural strength (maximum flexural strength of 41.29 MPa). Scanning electron microscopy (SEM) revealed a strong interfacial bond between the fibre and matrix, with porcelain particles serving as bridges to facilitate stress transmission. The biocomposite exhibited reduced water absorption due to the inherent hydrophobic nature of porcelain, which enhances its resistance to bacterial growth. The study demonstrates that combining Napier grass fibre with porcelain filler particles synergistically enhances the properties of PLA, creating a viable biocomposite material suitable for use in packaging, automotive, and sustainable building industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call