Abstract

This paper focuses on evaluating the mechanical recycling potential of poly(lactic acid) (PLA) biocomposites reinforced with agave fibers (AF). The biocomposites were prepared by extrusion using 5, 15, and 30 wt.% of agave fibers and reprocessed up to eight times. The results show that the fiber dimensions substantially decrease during reprocessing, especially after the first extrusion cycle, followed by a more gradual decrease in each subsequent cycle. The melt flow index (MFI) and the mechanical properties (except impact strength) tend to decrease as the fiber concentration increases. On the other hand, the glass transition temperature ( T g) and the crystallinity ( X c) of the biocomposites increased with increasing fiber concentration. It is important to highlight that closed-loop reprocessing does not significantly affect the overall behavior of the biocomposites under the conditions investigated. Therefore, PLA reinforced with AF is suitable for primary recycling since the final properties are mainly influenced by the fiber concentration and less by the number of reprocessing cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call