Abstract
The collection of twelve bronze artifacts discovered in Xichuan provides invaluable historical insights into the Warring States period (476 BC to 221 BC) of ancient China. To investigate their fabrication techniques and current state of preservation, a comprehensive analysis was conducted using a metallographic microscope, a scanning electron microscope, and an electron spectrometer to examine the microstructure and elemental composition of the artifacts. The findings revealed that the copper content in these bronze artifacts varied between 41.82% and 87.95%, the tin content ranged from 6.79% to 46.88%, and the lead content was less than 28.96%. The microstructure exhibited an α-solid-solution dendritic-crystal-segregation structure, with a substantial amount of (α + δ) eutectic distributed in an island-like pattern. Lead was dispersed unevenly, appearing as small granules and large ellipsoids. The composition of these weapons aligned with their intended use, adhering to the manufacturing standards of traditional Chinese bronzes. However, their state of preservation was suboptimal, necessitating immediate protective measures. This study contributes physical evidence to the research on early Chinese bronze production and offers scientific guidance for the conservation and restoration of these bronze artifacts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.