Abstract

To reduce the carbon emissions in power sector, a biomass-based integrated gasification combined cycle (BIGCC) with oxy-fuel combustion is proposed. The syngas generated from biomass gasification is burned under oxy-fuel atmosphere for power generation, and CO2 in the flue gas is captured by merely cooling. Thus, the negative CO2 emissions are realized considering the carbon neutral character of biomass. The effects of gasification temperature and pressure on syngas composition and system performance are investigated. The results show that rising pressure and temperature lead to lower H2 and CO production, while CO2 and CH4 generation are enhanced with higher pressure and lower temperature. The system efficiency increases with the pressure rise, while it fluctuates with the temperature variation. The optimum temperature and pressure of gasification is 1000 °C and 3.5 MPa. The corresponding energy and exergy efficiency is 35.41% and 31.21%. The thermodynamic analysis is carried out for each subsystem. The energy loss and exergy destruction is 76.2% and 55.4% for gasifier and 21.8% and 31.3% for HRSG. Considering the unavoidable energy and exergy consumption in gasification, the system optimization can be concentrated on HRSG. The efficient power generation and significant carbon emissions reduction are achieved in the proposed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call