Abstract

ABSTRACTInjection molding was performed using poly(l-lactide) (PLLA) as a matrix and by varying the reinforcements, i.e., dry-distilled kenaf core (D-core) or untreated kenaf bast fibers, and the physical properties for these composites were subsequently compared. The dry-distillation was able to reduce the moisture content of D-core by a maximum of 4.2% as compared with untreated control core. As a result, the hydrophobicity was increased, which contributed to favorable Charpy impact strength and tensile properties of the D-core/PLLA composite relative to the kenaf bast fiber/PLLA composite. Moreover, the puffing phenomenon, which arises when heating with a microwave oven due to the vaporization of water dispersed within the interfacial regions and associated softening of the PLLA matrix by the heated vapor, was completely suppressed for the D-core/PLLA composite, whereas a large puffing ratio was observed for the kenaf bast fiber/PLLA composite. Reducing the moisture content also effectively suppressed the occurrence of transesterification reactions, leading to a decrease in the molecular weight of PLLA. However, the apparent nucleation effect of the D-core remains slightly inferior to that for the hydrophilic bast fibers due to its stronger affinity for PLLA molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.