Abstract

Aerobic denitrifying bacteria have the potential to remove the co-pollutants Ni(II) and nitrate in industrial wastewater. In this study, aerobic denitrifying bacteria with significant Ni(II) removal efficiency was isolated from the biological reaction tank and named as Pseudomonas hibiscicola L1 strain after 16 S rRNA identification analysis. The removal of ever-increasing Ni(II) and NO3−-N wastewater under aerobic conditions by strain L1 was discussed. The experimental results showed that strain L1 removed 84% of Ni(II) and 81% of COD, with the use of 34.8 mg L−1 of nitrogen source and without nitrite accumulation yet. Strain L1 had remarkable activity (OD600 = 0.51–0.56 (p < 0.05)) at 20 mg L−1 of Ni(II) and 100 mg L−1 of NO3−-N. It was found that high Ni(II) gradients (2–10 mg L−1) had little effect on nitrate removal ratio (35-34% (p > 0.05), and the removal ratios of Ni(II) was enhanced (from 42% to 83% (p < 0.05)) by increasing nitrate (25–100 mg L−1). Also, the results indicated that strain L1 could reduce Ni(II) and nitrate under different pH (6–9); electron donor-glucose, sodium acetate, sodium succinate and trisodium citrate; C/N (5–20) and coexisting ions (Cu(II) and Zn(II)). Notably, the nitrogen balance analysis showed 32.4% of TN was lost nitrogen and 19.7% of TN was assimilated for cell growth, which indicated aerobic denitrification process of strain L1. Meanwhile, characterization technology (SEM, FTIR, and XRD) showed Ni(II) was bioadsorbed in the form of Ni(NH2)2, NiCO3, and Ni(OH)2·2H2O through surface functional groups. This research provides new microbial method for the simultaneous removal of nitrate and Ni(II) in wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.