Abstract
Digital Image Correlation (DIC) is a flexible and effective technique to measure the displacements on specimen surfaces by matching the reference subsets in the undeformed image with the target subsets in the deformed image. With the existing DIC techniques, the user must rely on experience and intuition to manually define the size of the reference subset, which is found to be critical to the accuracy of measured displacements. In this paper, the problem of subset size selection in the DIC technique is investigated. Based on the Sum of Squared Differences (SSD) correlation criterion as well as the assumption that the gray intensity gradients of image noise are much lower than that of speckle image, a theoretical model of the displacement measurement accuracy of DIC is derived. The theoretical model indicates that the displacement measurement accuracy of DIC can be accurately predicted based on the variance of image noise and Sum of Square of Subset Intensity Gradients (SSSIG). The model further leads to a simple criterion for choosing an optimal subset size for the DIC analysis. Numerical experiments have been performed to validate the proposed concepts, and the calculated results show good agreements with the theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.