Abstract
Using severe accident analysis program MELCOR, the small break loss of coolant accident (SBLOCA) analysis model was established for a marine reactor. The release and migration of radionuclides were analyzed during a severe accident induced by SBLOCA. The analysis of the hydrogen source term release showed that the maximum hydrogen release amount was 248.567 kg, and the hydrogen release amount accounted for less than 4% of the air volume. So, there would be no danger of hydrogen explosion accidents. The research mainly focused on the behaviors of the release, the transport, the retention, and the final distribution of inert gases represented by Xe, volatile gases represented by CsI, and nonvolatile nuclides represented by Ba. The results showed that the reactor core exposed completely with a lagging by 510 s and the initial release time of nuclides was lagged by 1916 s. The release shares of Xe in the primary circuit system, the containment, and the environment were 0.013%, 0.06%, and 32.71%, respectively. Also, Ba shared 0.016%, 0.0032%, and 3.28%, respectively, and CsI shared 0.0145%, 0.0012%, and 2.845%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.