Abstract

A polycarboxylate superplasticizer (PCs) was synthesized by copolymerization of allyl polyoxyethylene ethers (APE), acrylic acid (AA), sodium methylallyl Sulfonate (SMAS) and ethyl acrylate (EA). The effect of functional groups and branch chain on PCs properties was investigated by the test of fluidity of cement paste, retardation performance and Zeta potential of cement particles. The results showed that carboxylic groups and ethyl ester groups can improve water reducing ratio and fluidity of cement paste, and the sulfonic groups has an important contributiion to retardation performance of PCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.