Abstract
In this paper, based on the background of a deep shale reservoir, a solid–liquid two-phase flow model suitable for proppant and fracturing fluid flow was established based on the Euler method, and a large-scale fracture model was established. Based on field parameters, a proppant transport experiment was conducted. Then, on the basis of the experimental fracture model, proppant transport simulation under different influencing factors was carried out. The results show that the laboratory experiment was in good agreement with the simulated results. The process of proppant accumulation in fractures can be divided into three stages according to the characteristics of sand banks. The displacement mainly affects the sedimentation distance of the proppant in the first stage, and the viscosity of the fracturing fluid represents the strength of the fluid sand carrying performance. Compared with 40/70 mesh proppant, 70/140 mesh proppant is more easily fluidizable, the fracture width has less influence on proppant migration and placement, and the perforation location only affects the accumulation pattern at the fracture entrance, but has less influence on proppant placement in the remote well zone.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have