Abstract

A new fluorinated acrylate terpolymer hydrophobic polymer was prepared by emulsifier-free inverse microemulsion polymerization using methyl methacrylate (MMA) and hexafluorobutyl acrylate (HFBA) as monomers, and methyl polyethylene glycol methacrylate (MPEGMA) as polymerizable emulsifier. Membrane properties were characterized by means of FT-IR, SEM and Contact Angle Meter. The effect of fluorinated monomer content, water content in the inverse precursor microemulsion on the surface morphologies and hydrophobicity of the polymer film was mainly discussed. Morphological studies of the fluorinated polyacrylate polymers by SEM showed that discrete granular microstructures were obtained from precursor microemulsion with higher water content. On the other hand, smooth and continuous surface morphologies were found with lower water content. Contact angle revealed that the fluorine preferentially enriched at the film-air interface and more hydrophobic that the film-glass interface. The amount of HFBA had significantly effects on the film properties. The water contact angle of the film-air interface increased as the amount of HFBA increased from 0 ml to 4 ml and then remained almost unchangeable. The film formed from the fluorinated polyacrylate polymer with higher water content in the precursor microemulsion exhibited better hydrophobicity in comparison with the film formed from the fluorinated polyacrylate polymer with the lower water content, and it confirmed that rough surface have high water contact angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call