Abstract

This paper conducts a comprehensive analysis of undulating and oscillatory movements in fish, utilizing numerical simulations to explore correlations among fin thrust and swimming speed. The study distinguishes itself through a unique approach by employing kinematic equations of motion control, specifically in oscillation and undulation, for computational fluid dynamics. Despite increasing energy loss with undulation, the study reveals a reduction in power demand with oscillation, underscoring its effectiveness in achieving desired speeds. The dynamics of undulating fins in aquatic and aerial locomotion remain insufficiently understood. The trade-off between more energy-consuming but highly propulsive movements or simpler and faster movements requires sophisticated design techniques to reduce volume. The geometry, developed using Rhino 6 software, incorporates precise fluid resistance calculations conducted with Ansys Fluent 19. Spanning flow velocities from 1 to 4 m/s were used for the simulation condition. Critical factors such as flexibility, viscosity, and shape change were meticulously examined for their impact on efficiency enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call