Abstract

The structure–property relationships of polypropylene/ethylene-propylene-diene (PP/EPDM) (80/20) nanocomposites containing single-walled carbon nanotubes (SWCNTs) by melt-mixing process were investigated, the main focus being on the effect of SWCNTs concentration and compatilizer content. Morphological observations by scanning electron microscopy (SEM) are presented in conjunction with the mechanical, thermal, and rheological properties of these nanocomposites. The tensile modulus of nanocomposites was enhanced by increasing the SWCNTs concentration. A high level of toughness in the thermoplastic elastomer polyolefin (TPO)/SWCNTs nanocomposite was achieved with 0.5 wt% of SWCNTs and 1 wt% of polypropylene-grafted maleic anhydride (PP-g-MA). Differential scanning calorimetry (DSC) experiments confirmed the nucleation effect of nanotubes on the crystallization process of the TPO/SWCNTs composites. An appreciable viscosity upturn and a non-terminal low frequency storage modulus were observed in nanocomposites containing SWCNTs whose values increased in the presence of compatibilizer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call