Abstract

The collision between the coal–gangue and the metal plate of the hydraulic support is a typical mechanical contact behavior in the surface coal mining, which will cause vibration in the tail beam and even in the whole hydraulic support. This paper presents a contact analysis of coal–gangue impact on the metal plate to discover how vibration signals are generated and propagated in the collision process. We build a dynamic model for rock impact on the metal plate based on the elastoplastic contact theory, the Drucker–Prager criterion and the Tavares and King particle impact damage model. We establish a finite element model of the impact system between the coal–gangue and the metal plate, conduct contact simulation using the software LS-DYNA and study the stress transfer process on the metal plate contact surface. We compare the parameters of coal and gangue impact on the metal plate and discuss how they are different by calculating the stress and displacement created in the metal plate, kinetic energy of the coal–gangue particles and the total energy of the metal plate. In addition, we study the effect of impact velocity on the vibration response of the metal plate. Results show that the stress wave diffuses outward from the center of the metal plate. The collision frequency, contact position of the rock sphere and re-collision time are random. As the impact velocity increases, the contact responses all increase. This study provides guidance for the analysis of vibration response of coal–gangue impact on tail beam .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call