Abstract

The objective of the present research was to study the effect of temperature on the mechanical properties, failure mode and uniaxial compression constitutive relationship of a modified polyurethane concrete. A total of 24 cube and 27 prism specimens were fabricated, and the uniformity of the polyurethane concrete was checked. The compressive test, splitting tensile test and static uniaxial compression test were carried out at 0, 15, 40 and 60 °C. The failure mode, cube compressive strength, splitting tensile strength, axial compressive strength, elastic modulus and the compressive stress–strain curves of the modified polyurethane concrete were obtained. Based on the experimental results, a uniaxial compression constitutive model of the modified polyurethane concrete considering temperature characteristics was proposed. The results show that the elastic modulus, cubic compressive strength, splitting tensile strength and axial compressive strength of the modified polyurethane concrete decrease with the increase of temperature, and the peak strain and ultimate strain increase significantly. When the temperature rises from 0 to 60 °C, the cubic compressive strength, splitting tensile strength and axial compressive strength are decreased by 67.1%, 66.4% and 73.3%, respectively. The calculation results of the proposed constitutive model are in good agreement with the test results. The results are expected to guide the application of the modified polyurethane concrete in bridge deck pavement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call