Abstract

COVID-19 and other respiratory infectious viruses are highly contagious, and patients need to be treated in negative pressure wards. At present, many negative pressure wards use independent air conditioning equipment, but independent air conditioning equipment has problems such as indoor air circulation flow, condensate water accumulation, and improper filter maintenance, which increase the risk of infection for healthcare workers and patients. The radiation air conditioning system relies on the radiation ceiling to control the indoor temperature and uses new air to control the indoor humidity and air quality. The problems caused by the use of independent air conditioning equipment should be avoided. This paper studies the thermal comfort, contaminant distribution characteristics, contaminant removal efficiency, and accessibility of supply air in a negative pressure ward with a radiation air conditioning system under three airflow patterns. In addition, the negative pressure ward was divided into 12 areas, and the infection probability of healthcare workers in different areas was analyzed. The results show that the application of radiation air conditioning systems in negative pressure wards can ensure the thermal comfort of patients. Stratum ventilation and ceiling-attached jets have similar effects in protecting healthcare workers; both can effectively reduce the contaminant concentrations and the risk of infection of healthcare workers. Ceiling-attached jets decreases the contaminant concentrations by 10.73%, increases the contaminant removal efficiency by 12.50%, and decreases the infection probability of healthcare workers staying indoors for 10min by 23.18%, compared with downward ventilation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call