Abstract
Low carbon and high performance have become key trends in the development of construction materials. Understanding the mechanism by which curing conditions affect the mechanical properties of high-ductility geopolymer concrete (HDGC) is of significant importance. This study investigated three sealing curing temperatures (room temperature, 45 °C, and 60 °C) and four curing durations (1 day, 3 days, 5 days, and 7 days), while considering two final curing ages (7 days and 28 days) to explore their effects on the axial tensile and compressive properties of HDGC. The results showed that both 45 °C and 60 °C could improve the brittle failure of HDGC under axial compressive loading. However, curing at 60 °C and for durations longer than 1 day in an oven would catalyze the formation of eight-faced zeolite crystals within the slag-fly ash geopolymer matrix, and it could weaken the matrix's pore structure and subsequently affect the material's later strength development. Nevertheless, oven heat curing enhanced the bridging effect between the fibers and the matrix, partially compensating for the reduction in the initial tensile strength of HDGC. This follows the pseudo-strain-hardening material's saturation cracking criterion to enhance the strain-hardening behavior of HDGC and improve its tensile energy absorption capacity. A curing condition of 45 °C for 5 days is recommended to maximize the ductility of HDGC. This study provides important theoretical support for the design and promotion of green, low-carbon, high-ductility composite materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.