Abstract
Due to numerous distributed power sources connecting to the grid, which results in strong grid volatility and diminished power quality, the traditional energy storage configuration is limited in terms of flexibility and economy. Based on this, integrating electric vehicles (EVs) into the distribution network as energy storage devices has emerged as a promising development direction. This paper proposes a frequency-response optimization study considering the strong uncertainty model of EVs. First, from the perspective of temporal-spatial characteristics, energy storage resources, and users’ willingness to respond, the strong uncertainty model of EVs is constructed by fitting the trip chain and the access probability of their participation in energy storage. Second, the frequency optimization model is integrated and constructed according to the response capability of a single EV. Finally, examples and scenarios are analyzed to verify that the maximum and minimum frequency offsets are reduced by 69.41% and 66.69%, respectively, which significantly reduces frequency fluctuations and stabilizes the output of EV clusters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have