Abstract
In this paper, two finite-time active fault-tolerant controllers for a robot manipulator, which combine a synchronous terminal sliding mode control with an extended state observer, are proposed. First, an extended state observer is adopted to estimate the lumped uncertainties, disturbances, and faults. The estimation information is used to compensate the controller designed in the following step. We present an active fault-tolerant control with finite-time synchronous terminal sliding mode control, largely based on a novel finite-time synchronization error and coupling position error. We also present an active fault-tolerant control that does not use a coupling position error. By using synchronization control, the position error at each joint can simultaneously approach toward zero and toward equality, which may reduce the picking phenomenon associated with the active fault-tolerant controller strategy. Finally, simulation and experimental results for a three degree-of-freedom robot manipulator verify the effectiveness of the two proposed active fault-tolerant controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.