Abstract

Based on a foundation pit project in Fuzhou, China, the influence of foundation pit excavation on the supporting structure and surrounding environment in a soft-soil area is studied. This study was based on actual monitoring data and investigated the variations in the supporting structure, surrounding constructions, and groundwater levels during excavation. The analysis of the monitoring data demonstrates the presence of pronounced ‘spatial effects’ and ‘temporal effects’ on the deformation of the support structure and surrounding structures. The deformation of the support structure and surrounding structures exhibits distinct spatial distribution characteristics at different locations along the excavation pit wall. Typically, more significant deformations are observed in the middle section of the pit wall, while deformations decrease as the distance from the pit corner decreases. The support structure’s and surrounding structures’ deformation characteristics vary during different construction stages. During the excavation phase, the rate of deformation increase in the support structure and surrounding structures is notably higher. In contrast, during the construction of the underground basement floor and the backfilling phase of the excavation pit, the rate of deformation increase in the support structure and surrounding structures is relatively lower. Throughout the entire construction period of the excavation pit, the groundwater level in the vicinity of the pit exhibits a fluctuating trend. Apart from the influence of rainfall, the overall variation in groundwater level is minimal, indicating the effective water-sealing performance of the combined Soil-Mixing Wall (SMW) support structure within the circular enclosure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call