Abstract

Samples of bismuth lead vanadium oxide (BIPBVOX) (Bi2V1–xPbxO5.5–x/2) singly substituted system in the composition range 0.05 ≤ x ≤ 0.20 were prepared by sol–gel synthesis route. Structural investigations were carried out by using a combination of differential thermal analysis (DTA) and powder X-ray diffraction (PXRD) technique. Energy dispersive X-ray spectroscopy analysis (EDXA) of doped samples was carried out to predict the sample purity and doping concentration. Transitions, α↔β, β↔γ and γ′↔γ were detected by XRD, DTA and variation in the Arrhenius plots of conductivity. The ionic conductivity was measured by AC impedance spectroscopy. The solid solutions with composition x ≤ 0.07 undergo α↔β phase transition, at 329 °C and β↔γ phase transition at 419 °C. The highly conducting γ′-phase was effectively stabilized at room temperature for compositions with x ≥ 0.17 whose thermal stability increases with Pb content. At 300 °C, the highest value of conductivity 6.234 × 10−5 S cm−1 was obtained for composition x = 0.15 and at 600 °C the highest value of conductivity 0.65 S cm−1 is observed for x = 0.17. AC impedance plots reveal that the conductivity is mainly due to the grain contribution to oxide ion conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call