Abstract

Samples of Sn4+-substituted bismuth vanadate, formulated as Bi4Sn x V2− x O11−( x /2)− δ in the composition range 0.07 ≤ x ≤ 0.30, were prepared by standard solid-state reactions. Sample characterization and the principal phase transitions (α ↔ β, β ↔ γ and γ′ ↔ γ) were investigated by FT-IR spectroscopy, X-ray powder diffraction, differential thermal analysis (DTA) and AC impedance spectroscopy. For composition x = 0.07, the α ↔ β and β ↔ γ phase transitions were observed at temperatures of 451 and 536°C, respectively. DTA thermograms and Arrhenius plots of conductivities revealed the γ′ ↔ γ phase transition at 411 and 423°C for x = 0.20 and 0.30, respectively. AC impedance plots showed that conductivity is mainly due to the grain contribution, which is evident in the enhanced short-range diffusion of oxide ion vacancy in the grains with increasing temperature. The highest ionic conductivity (5.03 × 10−5 S cm−1 at 300°C) was observed for the x = 0.17 solid solution with less pronounced thermal hysteresis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call