Abstract

In offshore engineering, the dynamic properties of ultrasoft clay in the seabed could affect the stability of offshore construction under dynamic loading. The typical rheological response of ultrasoft clay is studied based on the test results from large amplitude oscillatory shear tests with a rheometer. The ultrasoft clay undergoes three phases: the solid phase, transition phase and liquid phase, under dynamic loading. Modulus overshoot is observed when a phase transition occurs. The shear modulus and damping ratio of ultrasoft clay are studied based on the relationship between rheological parameters and dynamic parameters. The results show that the maximum shear modulus of ultrasoft clay could be expressed as a function of water content. Compared with general clay, the normalized shear modulus of ultrasoft clay decreases, and the damping ratio rapidly increases with increasing shear strain. Models describing the change in the normalized shear modulus and damping ratio with the shear strain of ultrasoft clay are suggested based on our test results. This study could aid in the evaluation of the stability of submarine structures at the seabed level under dynamic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.