Abstract
AbstractNon‐linear viscoelastic characteristics of carbon black (CB)‐filled fluoroether rubber mixture samples are investigated by large amplitude oscillatory shear (LAOS) tests. Three analysis approaches based on LAOS tests are then used to discuss correlations between rheological behavior and CB‐filling amount. Each non‐linear viscoelastic parameter of the mixture presents a three‐stage characteristic with increasing CB content, which are attributed to the alteration of CB–elastomer network structure, corresponding to the state where gum continuous phase, CB–elastomer mesophase, and excessive CB agglomerates predominate in the mixture compound, respectively. According to the findings in engineering experiments, a CB content of 35–40 phr is recommended, taking into account tensile, hardness, and aging properties. Excessive CB agglomerates are found to reinforce CB–elastomer networks at elevated temperatures. For cold‐resistance properties, structural changes in CB–elastomer network are proven to exert little effect on Tg, but a higher CB content was found to slightly enhance the cold‐resistance coefficient, probably due to the decrease in velocity fraction of gum rubber.Highlights LAOS tests were utilized to study the influences of CB on fluoroelastomer; Three‐stage alteration was observed in the mixture with increasing CB content; Correlation between CB content and the engineering properties was discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.