Abstract

Recently, micro shock tubes have been widely used in the medical engineering. The needle-free drug delivery device which mainly consists of a micro shock tube and an expanded nozzle has been produced to inject drug powders into human and animal bodies without any sharp metal needles. The drug powders were delivered by obtaining high momentum, which can be done by accelerating drug powders in the micro shock tube and supersonic nozzle. The particle-gas flows are induced by the incident shock wave developing by rupturing the diaphragm in the micro shock tube and again accelerated in the supersonic nozzle. The momentum of injected drug particles should be strictly controlled otherwise patients will suffer from skin injury or hurt. Even though micro shock tubes have been investigated in the past several decades, the detailed studies on particle-gas flows in the micro shock tube were rare to date due to the micro size and difficult experimental operation on micro shock tubes. In this paper, the experimental and numerical studies were carried out on investigating particle-gas flows in a designed micro shock tube. Particle tracking velocimetry (PTV) was performed to calculated particle average velocity at the exit of the supersonic nozzle. The nozzle flows were analyzed by obtaining instantaneous particle fields. The particle number density ratio was also investigated in the test section. The numerical simulations were performed by calculating unsteady Naver-Stokes equations on compressible flows and using fully implicit finite volume schemes. Discrete phase model (DPM) was used for simulating particle-gas flows in the micro shock tube. Particle diameter and density were varied to investigate their effects on the particle-gas flows. Unsteady particle-gas flows and shock wave propagation were obtained in details in the micro shock tube for present experimental and numerical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.