Abstract

A general method is described for synthesizing 3′,5′-dithio-2′-deoxypyrimidine nucleosides 6 and 13 from normal 2′-deoxynucleosides. 2,3′-Anhydronucleosides 2 and 9 are applied as intermediates in the process to reverse the conformation of 3′-position on sugar rings. The intramolecular rings of 2,3′-anhydrothymidine and uridine are opened by thioacetic acid directly to produce 3′-S-acetyl-3′-thio-2′-deoxynucleosides 3 or 5. To cytidine, OH− ion exchange resin was used to open the ring and 2′-deoxycytidine 10 was abtained in which 3′-OH group is in threo-conformation. The 3′-OH is activated by MsCl, and then substituted by potassium thioacetate to form the S,S′-diacetyl-3′,5′-dithio-2′-deoxycytidine 12. The acetyl groups in 3′,5′ position are removed rapidly by EtSNa in EtSH solution to afford the target molecules 6 and 13. The differences of synthetic routes between uridine and cytidine are also discusssed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.