Abstract
The mitigation of ionospheric delay is still of crucial interest in GNSS positioning, especially in precise solutions such as instantaneous RTK positioning. Thus, several effective algorithms and functional models were developed, and also numerous investigations of ionospheric correction properties in RTK positioning have been performed so far. One of the most highly effective approaches in precise relative positioning is the application of the ionosphere-weighted model with network-derived corrections. This contribution investigates the impact of the accuracy of the network ionospheric corrections on time-to-fix in RTK-OTF positioning. Also, an attempt has been made to estimate the desirable accuracy of the network ionospheric corrections, allowing for reliable instantaneous ambiguity resolution. The experiment is based on a multi-baseline GPS RTK positioning supported with network-derived ionospheric corrections for medium length baselines. The results show that in such scenario, the double-differenced ionospheric correction residuals should not exceed ∼1/3 of the L1 wavelength for successful single-epoch ambiguity resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.